Normal Bubbling of Fine Carbon Powders in High-Pressure Fluidized Beds

Karl V. Jacob

Chemicals Research Michigan Applied Science and Technology Laboratories Dow Chemical U.S.A. Midland, MI 48667

Alan W. Weimer

Engineering Research Laboratory Central Research Dow Chemical Company Midland, MI 48674

Fluidized beds of Geldart group A powders (Geldart, 1973) expand particulately for limited superficial gas velocities, u_a above the minimum fluidization velocity, u_{mf} . As bubbling commences at the minimum bubbling velocity, u_{mB} , the overall bed voidage, ϵ , decreases because the volume of the dense phase, δ_D in the bubbling bed is reduced more rapidly than the bubble holdup, δ_B , increases. This region of decreasing ϵ is an unstable bubbling region that is characterized by periodic fluctuations in bed height, L_f . A continued increase in u_o results in an increasing δ_R and, hence, an increasing ϵ . This region of increasing ϵ is characterized by stable, or normal, bubbling. The critical velocity and voidage at which normal bubbling commences are termed the normal bubbling velocity, u_N , and normal bubbling voidage, ϵ_N , and are determined from the intersection of best fit straight lines representing the unstable and stable bubbling regions on a $\log u_o$ vs. $\log \epsilon$ plot (Jacob and Weimer, 1987).

Few data are available that quantify the normal bubbling conditions for group A powders fluidized at high pressure. Such data are of fundamental interest.

Experimental Apparatus and Measurements

The effect of high pressure (to P=12,420 kPa) on particulate expansion and minimum bubbling for 44 and 112 μ m carbon powders fluidized by a synthesis gas mixture was investigated in previous work (Jacob and Weimer, 1987). In this work, normal bubbling velocity, u_N , and normal bubbling voidage, ϵ_N , are determined from analyses of bed expansion measurements car-

Correspondence concerning this paper should be addressed to A. W. Weimer.

ried out at higher u_o , but otherwise identical conditions as those reported earlier. Measurements of relative localized fluctuations in bed density (Weimer and Jacob, 1986) are also reported. All measurements were made by means of a nonintrusive rapid-response nuclear radiation density gauge (Weimer et al., 1985). Physical properties of the powder and gas and a description of the experimental apparatus have been reported previously (Jacob and Weimer, 1987).

Results and Discussion

Bed expansion measurements

Overall bed voidage, ϵ , as a function of u_o and P is shown in Figures 1a and 1b for the 112 and 44 μ m powders, respectively. Logarithmic plots of these data are given in Figures 2a and 2b. The normal bubbling velocity, u_N , generally decreases and approaches u_{mB} with increasing P for both powders. Likewise, the normal bubbling voidage, ϵ_N , generally increases and approaches ϵ_{mB} with increasing P for both powders. Hence, the magnitude of the unstable bubbling region (i.e., between u_{mB} and u_N) decreases with increasing P.

It can be seen from Figures 1a and 1b that the rate at which the bubbling fluidized bed expands with u_o for velocities $u_o > u_N$ increases with increasing P due to the formation of smaller and more slowly rising bubbles at higher P. Decreasing bubble size with increasing P results in an increasing bubble holdup rate and, hence, an increasing rate of expansion with u_o for higher P.

The experimentally determined u_N and ϵ_N are summarized in Table 1.

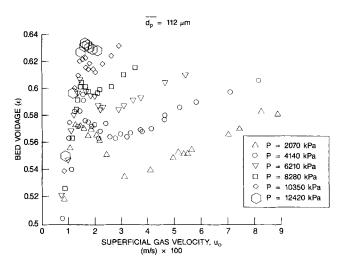


Figure 1a. Effect of pressure and gas velocity on bed voidage, $d_p = 112 \mu m$.

It appears from the results shown in Figure 2b that ϵ_N exceeds ϵ_{mB} for the 44 μ m powder at P=10,350 kPa. Under these conditions the appearance of the first bubble is not accompanied by a decrease in bed voidage (Jacob and Weimer, 1987).

It is not clear from these limited data where normal bubbling commences for either powder at P = 12,420 kPa.

Relative localized bed density fluctuations

Relative localized fluctuations in bed density at z=1.2 m above the gas distributor are quantified by calculating the ratio of the standard deviation of the instantaneous density measurement to the time-averaged density measurement, $\sigma[\rho_{Bed}]_c$ / $[\rho_{Bed}]_c$ /, as described previously (Weimer and Jacob, 1986). Since fluctuations in bed density are indicative of gas bubbles, the results shown in Figure 3a indicate that bubbles are generally smaller at higher P for the 112 μ m powder and are always smaller for the finer 44 μ m powder at equivalent P, Figure 3b. These findings are in agreement with results previously reported

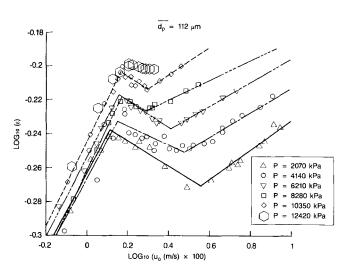


Figure 2a. Log plot of gas velocity vs. bed voidage for data of Figure 1a, $d_{\rho}=112~\mu\mathrm{m}$.

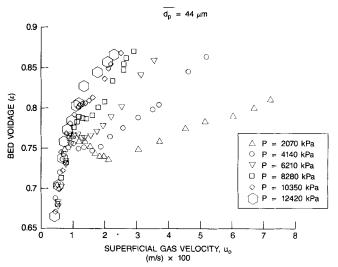


Figure 1b. Effect of pressure and gas velocity on bed voidage, $d_p = 44 \mu m$.

Table 1. Experimental Normal Bubbling Measurements

Mean Particle Dia. $\overline{d}_p \mu m$	Press., P kPa	$m/s \times 100$	ϵ_N
44	2,070	2.26	0.735
44	4,140	1.87	0.746
44	6,210	1.60	0.760
44	8,280	1.60	0.785
44	10,350	1.62	0.813
44	12,420	_	
112	2,070	3.57	0.536
112	4,140	2.98	0.561
112	6,210	2.57	0.579
112	8,280	1.92	0.593
112	10,350	1.98	0.611
112	12,420	_	

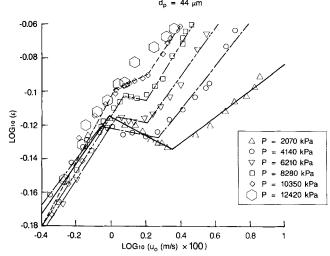


Figure 2b. Log plot of gas velocity vs. bed voidage for data of Figure 1b, $d_p = 44 \mu m$.

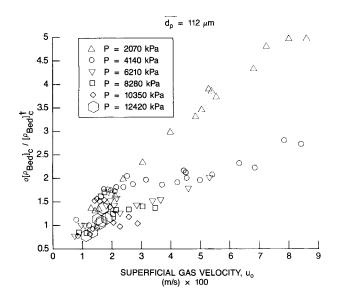


Figure 3a. Effect of pressure and gas velocity on relative localized bed density fluctuations, $z=1.2~{\rm m}; d_p=112~{\rm \mu m}$

(Weimer and Quarderer, 1985) from cross-correlations of fluctuating differential pressure measurements for similar carbon powders fluidized over a smaller pressure range.

Notation

 \overline{d}_p = mean particle diameter

 L_f = expanded bed height

 \vec{P} = pressure

 u_o = superficial gas velocity

 u_{mB} = minimum bubbling velocity

 u_{mf} = minimum fluidization velocity

 u_N = normal bubbling velocity

Greek letters

 δ_R = bubble phase volume fraction

 δ_D = dense phase volume fraction

 ϵ = overall bed voidage

 ϵ_N = normal bubbling voidage

 ϵ_{mB} = bed voidage at minimum bubbling

 $[\rho_{Bed}]_c$ = cross-sectional centerline instantaneous bed density

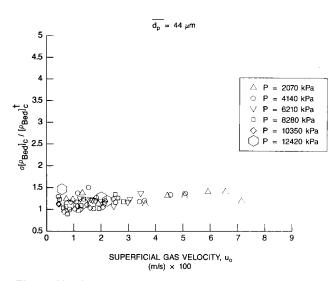


Figure 3b. Effect of pressure and gas velocity on relative localized bed density fluctuations,

 $z = 1.2 \text{ m}; d_p = 44 \mu\text{m}$

 $[\rho_{Bed}]_c^l$ = time-averaged cross-sectional centerline bed density $\sigma[\rho_{Bed}]_c$ = standard deviation of instantaneous bed density

Literature Cited

Geldart, D., "Types of Gas Fluidization," *Powder Technol.*, 7, 285 (1973).

Jacob, K. V., and A. W. Weimer, "High-Pressure Particulate Expansion and Minimum Bubbling of Fine Carbon Powders," AIChE J., 33(10), 1698 (Oct. 1987).

Weimer, A. W., and K. V. Jacob, "On Bed Voidage and Apparent Dilute Phase Holdup in High-Pressure Turbulent Fluidized Beds of Fine Powders," *Fluidization V, K.* Ostergaard, A. Sorensen, eds., Eng. Found., New York, 313 (1986).

Weimer, A. W., and G. J. Quarderer, "On Dense Phase Voidage and Bubble Size in High-Pressure Fluidized Beds of Fine Powders," AIChE J., 31, 1019 (1985).

Weimer, A. W., D. C. Gyure, and D. E. Clough, "Application of a Gamma-Radiation Density Gauge for Determining Hydrodynamic Properties of Fluidized Beds," *Powder Technol.*, 44, 179 (1985).

Manuscript received Oct. 15, 1987, and revision received Feb. 18, 1988.